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Abstract

Multi label genre classification based on movie summary data is a complicated
machine learning problem. I chose to do a project exploring the process of cleaning
data using natural language processing and how well different machine learning
models are able to handle the complex classification problem. My investigations
involved comparing logistic regression, random forest, and Multinomial Naive
Bayes classifiers. Due to the complexity of the problem the accuracy metrics of my
trained models weren’t particularly impressive. However, the cleaning process and
the exploration of how each model predicted showed interesting results for how
each model performed.

1 Introduction

For this project I decided to explore models to create a classifier that can predict a movies genre based
on the movies plot/synopsis. This genre prediction is a complex multi-label classification problem
with Natural language processing(NLP). A movie can have multiple genre tags and genre’s are a
fairly abstract concept so for the purposes of this project I planned to clean and prep the data and
then compare the results obtained through different classifiers.

This type of NLP can be very useful for predictive algorithms to classify media content. If algorithms
are able to classify abstract concepts like genre based on descriptions or summaries with decent
accuracy it could help sorting algorithms to suggest like-content to end users.

2 The Data set and problem

To accomplish this project I used the CMU Movie Summary Corpus available for free at

http://www.cs.cmu.edu/~ark/personas/

this dataset contains 42,306 movie plot summaries extracted from Wikipedia and movie metadata
matched to the appropriate Wikipedia movie id.

Before cleaning the data it needed to be processed into a workable format. I began by loading the
meta data file into a pandas dataframe, this was simple because it came in a table format already. The
summary data started as a text document which I read into memory and split into it’s summary and
Wikipedia id components, which I then loaded into a dataframe. I renamed the columns of my 2
dataframes appropriately and then merged the dataframes to create a dataset containing the movie
id, movie name, genre tags, and plot summary. The genre tags were initially in a string format but I
converted them to a workable list format and then set out to clean the genre tags.
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2.1 Cleaning the Data

2.1.1 The Genre label cleaning

initially, in my data set of 43000 movies there were about 15000 unique combinations of genre tags.
After changing all strings to lowercase the total number of individual genres was lowered to 363
unique genre tags. upon inspection of these tags I found that the majority of these tags were either; a
spelling error, a combination of other tags, a tag that says nothing about the content of the movie or
an obscure sub-genre that could be decomposed into 1 or more of the more common genres. More
than 90% of these tags appeared in the dataset 1-10 times where my "main" genres would occur
1,000-20,000 times.

I created a look up table and cleaning algorithm based on my impressions and descriptions of the
various genres and sorted through the genre data removing and/or replacing all of the troublesome
tags. Therebye, reducing my initial 363 unique genre tags down to 30 tags with a minimum number
of occurrences of 106. (Code snippets can be found in Appendix*)

2.1.2 Synopsis NLP cleaning

The synopsis data needed to be cleaned using basic NLP. First I removed all non-alphanumeric
characters from each synopsis in my dataset reducing the synopsis’ down to just words and spaces.
The synopsis data could now be broken down and individual word counts could be used as input
features for my models.

Figure 1: Word distribution with stop words.

Figure 1 shows the top 25 words that dominated my dataset. We can observe that the dataset was
dominated by words like "the", "and". "in". These words are known as stop words in English and are
grammar words which hold no information about the subject of the writing. For our purposes, these
words add no useful information to our dataset and essentially pollute our features with noise. To get
rid of these words I imported a list of stop words from the nltk python package and created a function
that iterates through each synopsis removing the stop words.
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Figure 2: Word distribution without stop words.

Figure 2 shows the synopsis dataset after removing stop words. We can see that the distribution is
quite a bit more balanced and words more meaningful to the individual synopsis’ show up like "love",
and "life".

2.2 Feature engineering and data splitting

Once the data had been adequately cleaned, I needed to transform the word synopsis data into
meaningful word counts to use in my algorithms. To accomplish this I used sklearn’s TfidfVectorizer.
TfidfVectorizer essentially takes a word count across multiple documents and measures how often
each word was used in a particular document against how often it was used in all of the documents.
This essentially gives higher weight to keywords that appear in specific documents a lot and reduces
the weight of common words such as stop words which are common across many documents. Using
this vectorizer I converted my synopsis data into weights associated with each word giving the model
training data that should help it determine genres based on frequency of certain keywords.

An alternative to TfidfVectorizer was also explored with CountVectorizer. CountVectorizer is a much
simpler algorithm which essentially turns a list of words into a vector of word counts. CountVectorizer
puts no weight on any individual words based on frequency and focuses on the word counts as features.

For my genre data I was left with a list of 30 classes that my models would need to predict into. To
make this more workable for my models I used sklearn’s multilabelBinarizer to transform the 30
labels into an array of 30 binary values.

Figure 3: MultilabelBinarizer transform.
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3 Classifiers

Three classifiers were observed, logistic regression, random forest, and Multinomial Naive Bayes.
Due to memory limitations, Five-fold cross validation and hyper-parameter tuning was applied only
to the logistic regression algorithm.

3.1 Logistic Regression

Logistic regression classification was chosen because it’s a relatively simple algorithm for classi-
fication and the one I am the most familiar with. Logistic regression typically works as a binary
classification so in this application I put the logistic regression model through an sklearn OneVsRest-
Classifier to create my estimator. A OneVsRestClassifier essentially takes a binary classifier model
and creates a classifier that runs through all of the binary classifications in our output labels. So
my Logistic regression classifier can actually be thought of as 30 separate binary logistic regression
models which predict whether or not each of my 30 labels are present. I subjected this model to 5
fold cross validation and used a gridsearchCV to tune the C hyper parameter for values between 0.01
and 1000. Given the complexity of the gridsearchCV training took approximately 13 minutes.

3.2 Random Forest

Random forest classification was chosen as an alternate approach to logistic regression, Random forest
is a method of ensemble learning that generates decision trees for classification which vote on what
label to apply to a particular class. Random forest inherently supports multi-label classification and I
chose to build the classifier with 100 trees using the Shannon entropy criterion for tree splitting. For
the random forest classifier I also scaled the tfidf data to unit std zero mean. This criteria essentially
is used to minimize the log-loss between the predictions and the true labels of the individual trees. In
this configuration training a single model took approximately 7 minutes.

H(Qm) = −
∑
k

pmk log(pmk) (1)

3.3 Multinomial Naive Bayes

Finally I tried using Multinomial Naive Bayes classification. Multinomial Naive Bayes comes highly
recommended for NLP classification problems due to the it’s lightweight approach of measuring the
probability a document belongs in a particular class based on the frequency of which terms appear
in the document. For this approach I found that using CountVectorizer instead of TfidfVectorizer to
simply count the number of occurrences of the top 10,000 terms led to better prediction accuracy.
Training this model took 0.5 seconds which is extremely lightweight in comparison to the other two
models.

3.4 Scoring and Results

Simple accuracy scores check the number of correct perfectly correct classifications against the
number of incorrect classifications. If a model were to get a single label wrong for a sample then
it would be counted as an incorrect classification. Because I am dealing with a multiclass problem
with 30 different labels for each model to predict to, simple accuracy scores don’t provide much
information about how accurate my models are.

Because of this, I decided to use the f1-score as my accuracy metric. The f1-score is a measure of
harmonic mean of the precision and recall.

F1 = 2 ∗ (precision ∗ recall)/(precision+ recall) (2)

The f1-score I used applied ’micro’ averaging which calculates the score by counting the total true
positives, false negatives and false positives globally across all labels.
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With this scoring I found the Logistic regression algorithm to be the most accurate of the 3 getting a
score of 0.51 2nd best was Multinomial Naive Bayes with a score of 0.44 and last was random forest
with a score of 0.23.

Figure 4: Result scores.

Putting the predicted classes and the actual classes into a table we can make some observations about
why the scores are as low as they are.

Figure 5: Prediction table.

4 Discussion and Conclusions

We can see from Figure 5 that our random forest classifier seems much more likely to predict no
genre than my other 2 models, It also seems to be particularly biased to picking the more common
genres of drama and comedy over other genres. The Naive Bayes model was a lot less afraid to make
mistakes and was willing to predict multiple genres with more frequency, and the Logistic regression
model performed the best overall managing to get 1 at least 1 correct label in most of its predictions.

Part of the reason that my classifiers seem to be so inclined to predict no genre despite the training
set containing no movies with no genre is due to the OneVsRest classifier that I passed my models
through. The OneVsRest classifier looks at the data as 30 individual binary classifications to create
the multilabel classification we want to see. However, because the models are looking at binary
classifications of whether or not to include a particular tag, they have no motivation to pick any tag if
they don’t meet the individual classification criteria.

Due to the complexity of this problem and the number of labels I was optimistic to see a classification
accuracy as high as 50%. I believe that this project has served as a nice introduction into the field of
NLP for machine learning and if I were to continue working on this project I would experiment with
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improving accuracy by simplifying the classification down to 3 or 4 classes and fixing the issue of no
classification before increasing the complexity of the dataset again. I would also try to balance the
dataset a bit more finding more movies which fulfill less common tags to hopefully reduce the bias
seen by the random forest classifier.
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