
 

  

 

Mini-Project 4 
UBC Elec 301 

Andrew Munro-West 18363572 
 
 



Mini project 2  Andrew Munro-West 18363572 
 

1 
 

Table of Contents 
Part A An Active Filter ......................................................................................................... 2 

Setup ..................................................................................................................................... 2 

Part 1 – Capacitor and AM Values ......................................................................................... 2 

Part 2 – Oscillation ................................................................................................................ 4 

Part B A Phase Shift Oscillator ............................................................................................ 6 

Setup ..................................................................................................................................... 6 

Part 1 – Analysis .................................................................................................................... 6 

Part C A Feedback Network ................................................................................................ 8 

Setup ..................................................................................................................................... 8 

Part 1 – The DC operating point parameters ......................................................................... 9 

Part 2 – Measured open loop and predicted closed loop ..................................................... 10 

Part 3 – Measured closed loop response and 𝛽’s for various 𝑅𝑓 ........................................ 12 

Part 4 – Amount of Feedback from input and output resistance .......................................... 13 

Part 5 – The De-sensitivity Factor ....................................................................................... 14 

Conclusion: ............................................................................................................................. 15 

Appendix: ................................................................................................................................ 16 

 

 

 

 

 

 

 

 

 

 

 

 

 



Mini project 2  Andrew Munro-West 18363572 
 

2 
 

 

 

Part A An Active Filter 
Setup 

We are initially given the following Sallen-key configured low pass filter and tasked to find the 

values of components to turn it into a 2nd order Butterworth filter. 

We are given that the transfer function of this filter will be 𝐻(𝑠) = 𝐴𝑀
1/(𝑅𝐶)2

𝑠2+𝑠∗
3−𝐴𝑀

𝑅𝐶
+

1

(𝑅𝐶)2

  

And that 𝐴𝑀 = 1 +
𝑅2

𝑅1
 

 

Figure A-1: The initial low pass filter 

Part 1 – Capacitor and AM Values 

A Butterworth filter is defined by its complex double poles aligning perfectly spaced on a unit 

circle in the S plane in order to have pole cancellation across the real axis. As shown by my 

root locus diagram this means that for a 2nd order Butterworth filter, we must have these poles 

45° =
𝜋

2
𝑟𝑎𝑑 from the negative side of the real axis. For higher order Butterworth filters, we 

change the angle to be have 
𝜋

𝑁
𝑟𝑎𝑑 separation where N is the order of the filter. 
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Figure A-2: Root locus of 2nd order Butterworth filter 

 

In order to turn this filter into a Butterworth filter we look at the look up table of normalized 

Butterworth polynomials and find the form the denominator should take for a 2nd order 

Butterworth filter. For a second order butter worth this should be: (𝑠2 + 1.414𝑠 + 1) 

The denominator of our filter can be rewritten as 𝑠2 + 2𝜁𝜔𝑐𝑠 + 𝜔𝑐
2 

Where the cut frequency 𝜔𝑐 =
1

𝑅𝐶
 , and the damping factor 𝜁 =

3−𝐴𝑀

2
 

Using the fact that we want a cut frequency of 10kHz and that we are given R as 10kΩ we can 

solve for our C. 𝜔𝑐 =
1

10000∗𝐶
= 2𝜋 ∗ 10000 ∴ 𝐶 = 1.6𝑛𝐹 

To make a 2nd order Butterworth filter we need  

2𝜁 = √2 =  (3 − 𝐴𝑀) ∴ 𝐴𝑀 = 1.5857 

𝐴𝑀 = 1 +
𝑅2

𝑅1
= 1.5857 ∴

𝑅2

𝑅1
= 0.5857 

And since we are told 𝑅2 + 𝑅1 = 10000 we find  𝑅1 =  6307.89,   𝑅2 = 3692.106  

Plugging in values and simulating we get the following Bode Plots 
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Figure A-3: Bode plot of 2nd order Butterworth filter magnitude(bottom) and phase (top) 

Part 2 – Oscillation 

By removing the source and grounding the input of our circuit I began running tests to 

determine at what 𝐴𝑀 value the circuit will begin to start oscillating. In order to do this, I set 

step functions to change the ratio or my resistors R1 and R2. I started by stepping through 

values of R1 =1k to 9k (and the inverse for R2) in 1k increments while observing the 

behaviour. Then noting the point of extreme change, I changed the limits of my step and 

refined my search. (additional plots can be found in appendix) 

In the end I found the point where my circuit begins oscillating to be at 𝑅1 = 3331Ω and 𝑅2 =

6669 Ω these resistor values correspond to 𝐴𝑀 = 3 which makes sense as when 𝐴𝑀 = 3 the 

second term of our denominators polynomial goes to 0 and we get 𝑠2 + 𝜔𝑐
2 as the 

denominator of our transfer function (complex conjugate poles at 0). This transfer function 

results in the following root locus.   
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Figure A-4: root locus of point where circuit begins oscillating 

As can be seen by the root locus, our poles now both lands right on the imaginary axis with a 

real component of 0. At this point the circuit will have an infinite output for zero input signal at 

the frequency 𝜔𝑐. Poles on the right side of the imaginary axis are unstable, as we approach 

the right side of the imaginary axis, we see that our circuit begins to oscillate. This oscillation 

is due to the feedback loop in our circuit. When the poles of our transfer function start getting 

to the right side of the imaginary axis our circuit begins to amplify its output, with the feedback 

loop our circuit begins amplifying the output exponentially until we reach an upper limit. At the 

upper limit our gain stops increasing and we see the following oscillation with a frequency 

equal to our 𝜔𝑐. 

 

Figure A-5: oscillation waveform 

As can be seen in figure A-5 our waveform is oscillating at the expected frequency of 10kHz 

the same as our cut frequency 𝜔𝑐. 
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Part B A Phase Shift Oscillator 
Setup 

We are initially given the following phase shift oscillator to observe. 

 

Figure B-1: Phase shift oscillator circuit 

Part 1 – Analysis 

Given the circuit in figure B-1 and changing the 29k to 29.1k we manage to create an 

oscillating waveform given no input signal. Through experimentation I found that you could 

add as little as 10Ω to obtain oscillation however it would lake significantly longer to reach its 

maximum oscillation amplitude. 

The way that this oscillator works is through an op-Amp feedback network. the transfer 

function of such a configuration should look like: 𝐴𝑓(𝑗𝜔) =
𝐴(𝑗𝜔)

1+ 𝐴(𝑗𝜔)∗𝛽(𝑗𝜔)
  in order to have 

oscillation we will require poles on the 𝑗𝜔 − 𝑎𝑥𝑖𝑠. This means that  

1 +  𝐴(𝑗𝜔) ∗ 𝛽(𝑗𝜔) = 𝑠2 + 𝜔𝑜
2 this will give us a frequency 𝜔𝑜 where the gain of the loop  

𝐴𝛽 = −1, 𝐴𝑓 becomes infinite at this frequency. At 𝜔𝑜 the phase of the loop gain needs to be 

−180°  and the magnitude unity. This is called the “Barkhausen criteria”. 
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Figure B-2: Oscillation waveform 

As seen in figure B-2 the circuit oscillates at a frequency of 62.5 Hz 

It was proven in the appendix of our lecture notes that for this specific configuration of phase 

shift oscillator the oscillation frequency  𝜔 =
1

√6∗𝑅𝐶
 and 𝑘 = −29 as a minimum gain between 

output and input is necessary for our phase shift oscillator to oscillate. 

Using the equation for frequency we can quickly compute the expected value of frequency 

after changing our circuit. By changing the values of all my resistors and all my capacitors by 

factor of 2 and ½ we can see that frequency drops as RC increase which is expected 

according to our equation. 

 

Figure B-3: All 3 waveforms of interest double(largest wavelength), 

Halved (shortest wavelength) 
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As shown in figure B-3 we can see the following for the frequency of oscillation: 

Circuit R (Ω) C (F) Measured f (Hz) Calculated f (Hz) Error  

Halved 500 0.5𝜇 250 259.89  3.80546% 

Regular 1k 1𝜇 66.7 64.97  2.66277% 

Doubled 2k 2𝜇 15.8 16.24 2.70936% 

 

As you can see our equation for the frequency of oscillation is very accurate, providing less 

than 4% error for all our measurements. 

Part C A Feedback Network 
Setup 

 

Figure C-1: The Circuit of interest 

By opening the feedback resistor 𝑅𝑓, applying a 1mV 1kHz input signal and then varying the 

value of 𝑅𝐵2 from 1k to 100k I found that the Maximum open loop gain of our circuit can be 

found with 𝑅𝐵2 = 20.1𝑘Ω ≈ 20𝑘 at which point we have a gain of -127 V/V 
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Figure C-2: output waveform for Rb2 from 20k to 22k 

Part 1 – The DC operating point parameters 

Running the dc operating point analysis, I obtained the following values directly from my spice 

software: 

Name: Model: Ib: Ic: Vbe: Vbc: Vce: BetaDC: Gm: 

q2 cm2n3904 1.54E-05 2.19E-03 6.65E-01 -1.31E+01 1.38E+01 1.42E+02 7.90E-02 

q1 cm2n3904 1.08E-05 1.29E-03 6.54E-01 -1.25E+00 1.90E+00 1.20E+02 4.77E-02 

                  

Rpi: Rx: Ro: Cbe: Cbc: Cjs: BetaAC: Cbx: Ft: 

2.06E+03 0.00E+00 5.16E+04 3.87E-11 1.34E-12 0.00E+00 1.62E+02 0.00E+00 3.14E+08 

2.98E+03 0.00E+00 7.82E+04 2.61E-11 2.53E-12 0.00E+00 1.42E+02 0.00E+00 2.65E+08 

 

Specifically, we are asked for hfe gm and 𝑟𝜋 which correspond to 

 hfe gm 𝑟𝜋 

Q1 120 0.0477 2.98𝑘Ω 

Q2 142 0.0790 2.06𝑘Ω 
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Part 2 – Measured open loop and predicted closed loop 

 

Figure C-3: Bode plot Magnitude(Bottom) , Phase (top) 

As shown in figure C-3 the low 3dB cut is at 2.88Hz the high 3dB cut is at 91.2kHz and we 

have a midband gain of about 42.1 dB = |127| V/V as we expected. 

Applying a test source to measure input and output impedance we find: 

Rin Rout |Am| 𝜔𝐿3𝑑𝐵 𝜔𝐻3𝑑𝐵 

2.6𝑘Ω 58.8Ω 127 V/V 2.88Hz 91.2kHz 

 

Now we need to find the predicted closed-loop frequency response and both input and output 

resistance at 1khz. 

In order to predict the closed loop behaviour, we need to know the feedback topology and 

look at the appropriate parameter network. By looking at the circuit we can determine that the 

feedback topology is shunt-shunt, the output voltage is being sampled and then current is 

being mixed into the input to create our feedback network. Another way to look at it would be 

that the feedback resistor connects the input and the output in a parallel connection on both 

sides. The appropriate parameter for shunt-shunt topologies is the y-parameter network: 



Mini project 2  Andrew Munro-West 18363572 
 

11 
 

𝐼1 = 𝑦11𝑉1 + 𝑦12𝑉2 

𝐼2 = 𝑦21𝑉1 + 𝑦22𝑉2 

 

Figure C-4:The Feedback Network 

We compute the y parameter matrix for useful parameters, neglecting the feedforward of the 

feedback network 𝑦21 

𝑦11 =
𝐼1

𝑉1
|

𝑉2=0

=
1

𝑅𝑓
, 𝑦12 =  

𝐼1

𝑉2
|

𝑉1=0

= −
1

𝑅𝑓
= 𝛽 , 

    𝑦22 =
𝐼2

𝑉2
|

𝑉1=0 

=
1

𝑅𝑓
           

Given that 𝑅𝑓 = 100𝑘Ω, we have a feedback gain of 𝛽 =  −10𝜇𝑆 = 𝑦12 

Since our feedback topology is shunt-shunt (current in - voltage out), in order to calculate the 

closed loop gain of our amplifier, we need our open loop gain A in terms of V/A: 

𝐴′ =
𝑉𝑜

𝐼𝑠
=

𝑉𝑜

𝑉𝑠

𝑅𝑠

= 𝑅𝑠 ∗
𝑉𝑜

𝑉𝑠
= 𝑅𝑠 ∗ 𝐴 = 5𝑘 ∗ −127 = −635 𝑘𝑉/𝐴 

This works because 𝑅𝑠 Is the impedance of the source, if we were to treat our input source as 

a current source it should supply a current of 𝑉𝑠/𝑅𝑠 

We can then plug values into our feedback equation 𝐴𝑓 =
𝐴′

1+𝛽𝐴′ =
635𝑘

1+10𝜇∗635𝑘
= 86.4𝑘𝑉/𝐴 

dividing by the source impedance to return back to V/V we get feedback gain of 17.2V/V. 

By applying feedback, we also extend the bandwidth. As shown in class as feedback is 

applied the midband gain drops and the cut frequency points move farther away from each 

other extending the bandwidth by a factor of 1 + 𝐴′𝛽 = 7.35 on each side 
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𝑓𝐻3𝑑𝐵𝑓 = 𝑓𝐻3𝑑𝐵(1 + 𝐴′𝛽) = 91.2𝑘 ∗ (1 + 635𝑘 ∗ 10𝜇) = 670.3𝑘𝐻𝑧   

𝑓𝐿3𝑑𝐵𝑓 =
𝑓𝐿3𝑑𝐵

1 + 𝐴′𝛽
=

2.88

7.35
= 0.391𝐻𝑧 

Finally, we look at the input and output impedance. For the shunt-shunt feedback amplifier we 

have a Trans-resistance amplifier, A is a trans-resistance and 𝛽 is a transconductance. The 

negative feedback will decrease both the input and output impedances by the amount of 

feedback, 𝑅𝑖𝑓 =
𝑅𝑖

1+𝐴′𝛽
=

2.6𝑘

7.35
= 353.7Ω , 𝑅𝑜𝑓 =

𝑅𝑜

1+𝐴′𝛽 
=

58.8

7.35
= 8Ω  

To summarize our predicted closed loop response: 

 𝑅𝑖𝑓 𝑅𝑜𝑓 |Am| 𝜔𝐿3𝑑𝐵 𝜔𝐻3𝑑𝐵 

calculated 353.7Ω 8Ω 17.2 V/V 391mHz 670.3kHz 

Measured 242.7Ω 7.87Ω 17.24V/V 513mHz 676.1kHz 

 

Our calculated values agree with our measured values with good accuracy. Its worth noting 

that the measured 𝜔𝐿3𝑑𝐵 is slightly larger but still within the same magnitude. This is most 

likely caused by the sudden increase in gain towards the left side of our midband. We also 

see that our calculated input impedance is less accurate than our calculated output 

impedance. 

Part 3 – Measured closed loop response and 𝛽’s for various 𝑅𝑓 

 

Figure C-5: Closed loop frequency response magnitude(bottom) / Phase(top)  for 

 Rf = 1k (lowest line) 10k 100k 1M 10M (Highest line)  
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Using the value 𝐴′ = 635 𝑘𝑉/𝐴 found in the previous part we can measure the closed loop 

midband gain, convert it to V/A by multiplying by the source impedance and use the 

relationship 𝐴𝑓 =
𝐴′

1+𝛽𝐴′
  to find 𝛽comparing these values to our calculated 𝛽 of −

1

𝑅𝑓
 we get: 

Rf 𝐴𝑓 (V/A) 𝛽 Measured(S) 𝛽 Calculated(S) 

1k -995 -1.0034m -1m 

10k -9800 -0.1004m -0.1m 

100k -86.2 k −10.026𝜇 -10𝜇 

1M -389 k -0.996𝜇 -1𝜇 

10M -599.45 k -0.093𝜇 -0.1𝜇 

 

We can see that our calculated 𝛽 values are very close to the measured.  

We also observe that as 𝑅𝑓 drops to lower values we see a spike in our amplitude plot on the 

low frequency side of our midband. I believe the reason for this sudden spike at low 

frequencies is due to the coupling capacitor on the output side of our circuit. As we can see 

from the phase plot of our circuit there is a 180 ° phase shift in our circuit that coincides with 

our spike in amplitude. It can be observed that as 𝑅𝑓decreases in magnitude the 180° phase 

shift gets a steeper slope. The 2 larger 10𝜇𝐹 capacitors are responsible for the low frequency 

poles and the output capacitor seems to have an effect in relation to the feedback resistors 

size. A magnitude plot of my circuit using 𝑅𝑓 = 10𝑘 which varies the value of the output 

coupling capacitor can be found in the appendix which seems to support my idea that that 

capacitors relationship with 𝑅𝑓 is the cause of this behaviour. 

 

Part 4 – Amount of Feedback from input and output resistance  

First, we set up our circuit and measure the closed loop I/O resistances for our 3 values of 𝑅𝑓. 

𝑅𝑓 𝑅𝑖𝑓 𝑅𝑜𝑓 

10k 26.5 1.01 

100k 242 7.8 

1M 1315.8 34.97 

 

We are told to compare the estimated amount of feedback with the predicted. The “amount of 

feedback” is referring to 1 + 𝐴′𝛽. To estimate the amount of feedback we use the relationship 

between the open and closed loop input/output impedances. 𝑅𝑖𝑓 =
𝑅𝑖

1+𝐴′𝛽
 , 𝑅𝑜𝑓 =

𝑅𝑜

1+𝐴′𝛽 
 

inputting our measured values and solving for 1 + 𝐴′𝛽. For our predicted values we use our 

value of 𝐴′ 𝑎𝑛𝑑 𝛽 from the previous parts. 𝐴′ = −635 𝑘𝑉/𝐴, and for 𝛽, the corresponding 

measured values from part 3. 
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Using 𝑅𝑖 = 2.6𝑘Ω ,   𝑅𝑜 = 58.8Ω from our open loop measurements: 

𝑅𝑓 𝑅𝑖/𝑅𝑖𝑓 𝑅𝑜/𝑅𝑜𝑓 Estimated 
Feedback 

Predicted 
Feedback 

10k 98.11 58.22 78.17 64.754 

100k 10.74 5.47 8.105 7.3665 

1M 1.976 1.681 1.8285 1.6325 

 

This data shows us that using the relationship between the open and closed loop I/O 

resistance is a decently accurate method of estimating the amount of feedback in our circuit. 

We also see that the amount of feedback in our circuit will drop as the feedback resistor in our 

system increases. This makes sense as we are looking at a shunt-shunt feedback network 

meaning we are mixing current into our input to cause feedback, so increasing the size of our 

feedback resistor will reduce the amount of current being fed back into our input and reduce 

the amount of feedback. 

Part 5 – The De-sensitivity Factor 

For the De-sensitivity factor, we want to see how much the feedback gain changes with the 

open loop gain. Differentiating 
𝑑𝐴𝑓

𝑑𝐴
=

1

1+𝐴𝛽
−

𝐴𝛽

(1+𝐴𝛽)2 =
1

(1+𝐴𝛽)2 ,
𝑑𝐴𝑓

𝐴𝑓
=

1

1+𝐴𝛽

𝑑𝐴

𝐴
 as we see here the 

closed loop gain changes with the open loop gain after being De-sensitised by a factor of 1 +

𝐴𝛽. For the expected value we use the previously found 𝛽 =  −0.01 𝑚𝑆 and 𝐴′ = 635𝑘 for a 

100k feedback resistor giving us a de-sensitivity factor of 1 + −635𝑘 ∗  −10.026𝜇 = 7.3665 for 

𝑅𝑓 = 100𝑘 

𝑅𝑐  AM open loop 
(V/A) 

AM closed loop 𝑅𝑓 = 100𝑘 

(V/A) 

Observed 

9.9k -634.2k -86.17k 7.360 

10k -637.75k -86.24k 7.395 

10.1k -640.99k -86.30k 7.42 

 

As we can see from the data it is apparent that the de-sensitivity factor will increase as the 

gain of our amplifier increases.  
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Conclusion: 
Throughout this mini project we learned about feedback in several different capacities. 

First, we built a low pass Butterworth filter. In designing the filter, we learned about the affects 

of complex conjugate poles in the s-plane. We then converted our Butterworth filter into an 

oscillator by moving its complex poles onto the jw-axis and then slightly into the right side of 

the jw-axis. 

In the second part we built a phase shift oscillator. The phase shift oscillator works on a 

similar principle to the oscillator we built in the first part; the oscillation is caused by complex 

conjugate poles on the jw – axis. The feedback loop causes the unstable poles to increase 

the input with every iteration of the loop, depending on how far to the right of the axis the 

poles are the gain will change and it will take longer for the circuit to oscillate at its maximum 

value. 

In the third and final part we analyzed a feedback network. Identifying the feedback network 

as a shunt-shunt topology we went through the process of calculating, measuring and 

comparing the open and closed loop responses of the feedback amplifier in order to better 

understand the behavior and influence of feedback in our circuits. We calculated both the 

amount of feedback in our network as well as the de-sensitivity factor and observed how they 

affect the gain, midband and I/O resistances of our circuit. 

Through this project we’ve learned and gained a fair bit of experience working with oscillators 

and feedback networks. A very useful takeaway from this project has been my newfound 

understanding of feedback topologies. 

 

 

 

 

 

 

 

 

 

 

 

 



Mini project 2  Andrew Munro-West 18363572 
 

16 
 

 

 

 

Appendix: 
 

 

Part A -1 Oscillation behavior as A goes from 10 to 0 visually describing the effect of pole 

position on oscillation behavior. 

 

Part C-5 amplitude response for values of 𝐶𝐶2 from 0.1u to 10m showing the effect of the 

steeper 180° phase shift caused by the interaction of 𝑅𝑓 𝑎𝑛𝑑 𝐶𝐶2 


