# Introduction to Power Electronics

Dr. Martin Ordonez
Canada Research Chair
Holder of the Fred Kaiser Professorship
University of British Columbia

Fall 2021





#### **Lecture Overview**

- Electrical energy conversion today
- Key concepts in electrical energy conversion
- Design example and prototyping
- Summary

## **Energy Conversion Today: Applications**

Portable

Automotive and transportation

Aerospace

Renewable energy harvesting

Lighting

UPS / Backup power

Power generation and transmission

**Telecommunications** 

Programmable power

Military

Consumer electronics





## **Energy Conversion Today: Basic Scheme**

Utility (single and three-phase) batteries, fuel cells, photovoltaic, generator, flywheel, etc

PFC, rectifier, isolation, step-up, step-down, charger, ballast, inverter, etc

Heater, electric motor, lamp, electronics equipment, battery, transmission line, grid, appliances, vehicle, portable equipment, electrolyzer, etc **Power Source** Energy Conversion

# Basic Power Converter: Heating System





# Basic Power Converter: Heating System









### **Basic Power Converter: Devices**











#### Basic Power Converter: Modulation and Control









# Power Quality, Losses, and Thermal Management





## Output Filter: Magnetics





#### TIME DOMAIN



#### FREQUENCY DOMAIN













LOSSES / EFFIC.



THERMAL MANAG.



MAGNETICS



## Source and Load



















LOSSES / EFFIC.



THERMAL MANAG.



MAGNETICS







# Example: Selection of Parameters





### Prototype



**System Integration:** Packaging, Thermal Management EMI and EMC.

Modeling, Simulation, and Control:

Paraeities, Circuit and System, CAD/CAN

Parasitics, Circuit and System, CAD/CAE Tools, Sensor and Sensorless Control, Digital Control.

**AC Power:** Single- and Multi-Phase Inverters, PWM Techniques, sensor integration, fault tolerant operation.

<u>Devices and Components</u>: Semiconductor Devices, Magnetic Components, Capacitors, Batteries, Sensors, Interconnects, Device Integration.

**Grid rectifiers and DC-DC Converters**:

Single- and Multi-Phase, Single- Multi Level, Hard- and Soft-Switched, Resonant.

<u>Utility Interface</u>: Power Factor Correction, Power Quality, Electronics and Controls for Distributed Energy Systems.

**Motor Drives**: AC and DC



MODULATION



CONTROL

POWER QUALITY



LOSSES / EFFIC.



THERMAL MANAG.



MAGNETICS







## Fuel Cell, Batteries, PV, Motor...





### Introduction to Power Electronics



Presented by: Dr. Martin Ordonez



THERMAL MANAG.



LOSSES / EFFIC.

Questions?



CONTROL





